Castor oil plant

Ricinus communis
Castor oil plant
Castor bean in disturbed area
Scientific classification
Kingdom: Plantae
(unranked): Angiosperms
(unranked): Eudicots
(unranked): Rosids
Order: Malpighiales
Family: Euphorbiaceae
Subfamily: Acalyphoideae
Tribe: Acalypheae
Subtribe: Ricininae
Genus: Ricinus
Species: R. communis
Binomial name
Ricinus communis
L.

The castor oil plant, Ricinus communis, is a species of flowering plant in the spurge family, Euphorbiaceae. It belongs to a monotypic genus, Ricinus, and subtribe, Ricininae. The evolution of castor and its relation to other species are currently being studied.[1]

Its seed is the castor bean which, despite its name, is not a true bean. Castor is indigenous to the southeastern Mediterranean Basin, Eastern Africa, and India, but is widespread throughout tropical regions (and widely grown elsewhere as an ornamental plant).[2]

Castor seed is the source of castor oil, which has a wide variety of uses. The seeds contain between 40% and 60% oil that is rich in triglycerides, mainly ricinolein. The seed contains ricin, a toxin, which is also present in lower concentrations throughout the plant.

Another plant species, Fatsia japonica, is similar in appearance and is known as the false castor oil plant.

Contents

Description

The castor oil plant can vary greatly in its growth habit and appearance. The variability has been increased by breeders who have selected a range of cultivars for leaf and flower colours, and for oil production. It is a fast-growing, suckering perennial shrub which can reach the size of a small tree (around 12 metres / 39 feet), but it is not cold hardy.

The glossy leaves are 15–45 centimetres (5.9–18 in) long, long-stalked, alternate and palmate with 5–12 deep lobes with coarsely toothed segments. In some varieties they start off dark reddish purple or bronze when young, gradually changing to a dark green, sometimes with a reddish tinge, as they mature. The leaves of some other varieties are green practically from the start, whereas in yet others a pigment masks the green colour of all the chlorophyll-bearing parts, leaves, stems and young fruit, so that they remain a dramatic purple-to-reddish-brown throughout the life of the plant. Plants with the dark leaves can be found growing next to those with green leaves, so there probably is only a single gene controlling the production of the pigment in some varieties at least.[3] The stems (and the spherical, spiny seed capsules) also vary in pigmentation. The fruit capsules of some varieties are more showy than the flowers.

The flowers are borne in terminal panicle-like inflorescences of green or, in some varieties, shades of red monoecious flowers without petals. The male flowers are yellowish-green with prominent creamy stamens and are carried in ovoid spikes up to 15 centimetres (5.9 in) long; the female flowers, born at the tips of the spikes, have prominent red stigmas.[4]

The fruit is a spiny, greenish (to reddish-purple) capsule containing large, oval, shiny, bean-like, highly poisonous seeds with variable brownish mottling. Castor seeds have a warty appendage called the caruncle, which is a type of elaiosome. The caruncle promotes the dispersal of the seed by ants (myrmecochory).

Nomenclature

The name Ricinus is a Latin word for tick; the seed is so named because it has markings and a bump at the end which resemble certain ticks. The common name "castor oil" probably comes from its use as a replacement for castoreum, a perfume base made from the dried perineal glands of the beaver (castor in Latin). It has another common name, palm of Christ, or Palma Christi, that derives from castor oil's reputed ability to heal wounds and cure ailments.

Medicinal uses

Castor oil has many uses in medicine and other applications.

Alcoholic extract of the leaf was hepatoprotective in rats.[5][6][7] Methanolic extracts of the leaves of Ricinus communis were used in antimicrobial testing against eight pathogenic bacteria in rats and showed antimicrobial properties. The extract was not toxic.[8] The pericarp of castor bean showed central nervous system effects in mice at low doses. At lower doses, the extract improved memory consolidation. At high doses mice quickly died.[9] A water extract of the root bark showed analgesic activity in rats.[10] Antihistamine and anti-inflammatory properties were found in ethanolic extract of Ricinus communis root bark.[11]

Other uses

Extract of Ricinus communis, exhibited acaricidal and insecticidal activities against the adult of Haemaphysalis bispinosa Neumann (Acarina: Ixodidae) and hematophagous fly Hippobosca maculata Leach (Diptera: Hippoboscidae).[12]

The Bodo tribals of Bodoland, Assam (India), use the leaves of this plant to feed and rear the larvae of muga and endi silkworms.

Castor oil is a good motor lubricant and has been used in internal combustion engines, including those of World War I airplanes, some racing cars and some model airplanes. It has advantages over petroleum based oils, especially at high and low temperatures. It does not mix with petroleum products. It has been largely replaced by synthetic oils that are more stable and less toxic.

Habitat, growth and horticultural uses

Although castor is indigenous to the southeastern Mediterranean Basin, Eastern Africa, and India, today it is widespread throughout tropical regions.[2] In areas with a suitable climate, castor establishes itself easily as an apparently "native" plant and can often be found on wasteland.

It is also used extensively as a decorative plant in parks and other public areas, particularly as a "dot plant" in traditional bedding schemes. If sown early, under glass, and kept at a temperature of around 20 °C (68 °F) until planted out, the castor oil plant can reach a height of 2–3 metres (6.6–9.8 ft) in a year. In areas prone to frost it is usually shorter, and grown as if it were an annual.[2] However, it can grow well outdoors in cooler climates, at least in southern England, and the leaves do not appear to suffer frost damage in sheltered spots, where it remains evergreen. It was used in Edwardian times in the parks of Toronto, Ontario, Canada.[13]

Cultivars

Selections have been made by breeders for use as ornamental plants (heights refer to plants grown as annuals) and for commercial production of castor oil[4]

Ornamental varieties:

(all the above grow to around 1.5 metres (4.9 ft) tall as annuals)[2]

Varieties for oil production:

Plant-animal interactions

Ricinus communis is the host plant of the Common Castor Butterfly (Ariadne merione), the Eri silkmoth (Samia cynthia ricini), and the Castor Semi-Looper Moth (Achaea janata). It is also used as a food plant by the larvae of some other species of Lepidoptera, including Hypercompe hambletoni and the Nutmeg (Discestra trifolii).

Toxicity

The toxicity of raw castor beans due to the presence of ricin is well-known. Although the lethal dose in adults is considered to be four to eight seeds, reports of actual poisoning are relatively rare.[14] According to the 2007 edition of the Guinness Book of World Records, this plant is the most poisonous in the world. Despite this suicides involving ingestion of castor beans are unheard of in countries like India where castor grows abundantly on the roadsides. There is reason to believe therefore that further research on the apparent high toxicity of small quantities of castor beans is necessary. However, it is well known that the poison can be extracted from Castor by concentrating it with a fairly complicated process similar to that used for extracting cyanide from almonds.

If ingested, symptoms may be delayed by up to 36 hours but commonly begin within 2-4 hours. These include a burning sensation in mouth and throat, abdominal pain, purging and bloody diarrhea. Within several days there is severe dehydration, a drop in blood pressure and a decrease in urine. Unless treated, death can be expected to occur within 3–5 days, however in most cases a full recovery can be made.[15][16] In most cases, on ingestion of the broken seeds, drinking a teaspoon of cold-pressed castor oil will prevent any poisoning.

Poisoning occurs when animals, including humans, ingest broken seeds or break the seed by chewing: intact seeds may pass through the digestive tract without releasing the toxin[15]. Toxicity varies among animal species: four seeds will kill a rabbit, five a sheep, six an ox or horse, seven a pig, and eleven a dog. Ducks have shown incredible resistance to the seeds: it takes an average of 80 to kill them.[17] The toxin provides the castor oil plant with some degree of natural protection from insect pests, such as aphids. In fact, ricin has been investigated for its potential use as an insecticide. The castor oil plant is also the source for undecylenic acid, a natural fungicide.

Commercially available cold-pressed castor oil is not toxic to humans in normal doses, either internal or externally. [18]

Chemistry

Three terpenoids and a tocopherol-related compound have been found in the aerial parts of Ricinus communis. Compounds named (3E,7Z,11E)-19-hydroxycasba-3,7,11-trien-5-one, 6α-hydroxy-10β-methoxy-7α,8α-epoxy-5-oxocasbane-20,10-olide, 15α-hydroxylup-20(29)-en-3-one, and (2R,4aR,8aR)-3,4,4a,8a-tetrahydro-4a-hydroxy-2,6,7,8a-tetramethyl-2-(4,8, 12-trimethyltridecyl)-2H-chromene-5,8-dione were isolated from the methanol extracts of Ricinus communis by chromatographic methods.[19]

Modern commercial usage

Global castor seed production is around one million tons per year. Leading producing areas are India (with over three-quarters of the global yield), China and Brazil, and it is widely grown as a crop in Ethiopia. There are several active breeding programmes.

Production

Top ten castor oil seed producers — 11 June 2008
Country Production (Tonnes) Footnote
 India 830 000 *
 People's Republic of China 210 000 *
 Brazil 91 510
 Ethiopia 15 000 F
 Paraguay 12 000 F
 Thailand 11 052
 Vietnam 5 000 *
 South Africa 4 900 F
 Philippines 4 500 F
 Angola 3 500 F
 World ' 1 209 756 ' A
No symbol = official figure, P = official figure, F = FAO estimate, * = Unofficial/Semi-official/mirror data, C = Calculated figure A = Aggregate (may include official, semi-official or estimates);

Source: Food And Agricultural Organization of United Nations: Economic And Social Department: The Statistical Division


Other modern uses

In Brazil, castor oil (locally known as mamona oil) is now being used to produce biodiesel. In rural areas, the abundant seeds are used by children for slingshot balls, as they have the right weight, size, and hardness.

The attractive castor seeds are used in jewelry, mainly necklaces and bracelets.

Castor oil was traditionally used on the skin to prevent dryness. This is now used as a base for many cosmetics.

Castor oil in a processed form, called Polyglycerol polyricinoleate--or PGPR, is currently being used in chocolate bar manufacture as a less expensive substitute to cocoa butter.

Castor oil is often used in the USA to repel moles and voles for lawn care.

Historical usage

Castor seeds have been found in Egyptian tombs dating back to 4000 BC; the slow burning oil was used mostly to fuel lamps. Herodotus and other Greek travelers noted the use of castor seed oil for lighting, body ointments, and improving hair growth and texture. Cleopatra is reputed to have used it to brighten the whites of her eyes. The Ebers Papyrus is an ancient Egyptian medical treatise believed to date from 1552 BC. Translated in 1872, it describes castor oil as a laxative.

The use of castor bean oil ("eranda") in India has been documented since 2000 BC in lamps and in local medicine as a laxative, purgative, and cathartic in Unani, Ayurvedic and other ethnomedical systems. Traditional Ayurvedic medicine considers castor oil the king of medicinals for curing arthritic diseases. It is regularly given to children orally, for de-worming.

Castor seed and its oil have also been used in China for centuries, mainly prescribed in local medicine for internal use or use in dressings.

It was used in rituals of sacrifice to please the gods in early civilizations.

Castor oil is known to have been used as an instrument of coercion by the paramilitary Blackshirts under the regime of Italian dictator Benito Mussolini. Dissidents and regime opponents were forced to ingest the oil in large amounts, triggering severe diarrhoea and dehydration, which could ultimately cause death. This punishment method was originally thought of by Gabriele D'Annunzio, the Italian poet and Fascist supporter, during the First World War. (See also: Castor oil: Use as a means of intimidation in Fascist Italy)

Common names

See also

References

  1. ^ "Euphorbiaceae (spurge) genomics". Institute for Genome Sciences. University of Maryland Medical School. http://www.igs.umaryland.edu/?q=content/euphorbiaceae-spurge-genomics. Retrieved 2009-03-09. 
  2. ^ a b c d Phillips, Roger; Martyn Rix (1999). Annuals and Biennials. London: Macmillan. p. 106. ISBN 0333748891. 
  3. ^ e.g. http://database.prota.org/publishedspeciesEn.htm
  4. ^ a b c Christopher Brickell, ed (1996). The Royal Horticultural Society A-Z Encyclopedia of Garden Plants. London: Dorling Kindersley. pp. 884–885. ISBN 0751303038. 
  5. ^ Joshi M., Waghmare S., Chougule P., Kanase A. "Extract of Ricinus communis leaves mediated alterations in liver and kidney functions against single dose of CCl4 induced liver necrosis in albino rats." Journal of Ecophysiology and Occupational Health 2004 4:3-4 (169-173)
  6. ^ Sabina E.P., Rasool M.K., Mathew L., Parameswari "Studies on the protective effect of Ricinus communis leaves extract on carbon tetrachloride hepatotoxicity in albino rats" Pharmacologyonline 2009 2 (905-916)
  7. ^ Kalaiselvi P., Anuradha B., Parameswari C.S "Protective effect of Ricinus communis leaf extract against paracetamol-induced hepatotoxicity" . Biomedicine 2003 23:1-2 (97-105)
  8. ^ Oyewole O.I., Owoseni A.A., Faboro E.O. "Studies on medicinal and toxicological properties of Cajanus cajan, Ricinus communis and Thymus vulgaris leaf extracts" Journal of Medicinal Plant Research 2010 4:19 (2004-2008)
  9. ^ Williamson E. M (ed) "Major Herbs of Ayurveda", Churchill Livingstone 2002
  10. ^ Williamson E. M (ed) Major Herbs of Ayurveda" Churchill Livingstone 2002
  11. ^ Lomash V., Parihar S.K., Jain N.K., Katiyar A.K."Effect of Solanum nigrum and Ricinus communis extracts on histamine and carrageenan-induced inflammation in the chicken skin." Cellular and molecular biology (Noisy-le-Grand, France) 2010 56 Suppl (OL1239-1251)
  12. ^ Zahir A.A., Rahuman A.A., Bagavan A., Santhoshkumar T., Mohamed R.R., Kamaraj C., Rajakumar G., Elango G., Jayaseelan C., Marimuthu S. "Evaluation of botanical extracts against Haemaphysalis bispinosa Neumann and Hippobosca maculata Leach" Parasitology Research 2010 107:3 (585-592)
  13. ^ Toronto Star, 9 June 1906, p. 17
  14. ^ Wedin, G.P., Neal, J.S., Everson, G.W., and Krenzelok, E.P. 1986. Castor bean poisoning. Am J Emerg Med. 4(3): 259-61. (abstract)
  15. ^ a b Soto-Blanco B, Sinhorini IL, Gorniak SL, Schumaher-Henrique B. 2002. Ricinus communis cake poisoning in a dog. Vet Hum Toxicol. Jun 44(3):155-6.
  16. ^ Ricinus communis (Castor bean) - Cornell University 2008. [1]
  17. ^ Union County College: Biology: Plant of the Week: Castor Bean Plant
  18. ^ NTP technical report on the toxicity studies of Castor Oil (CAS No. 8001-79-4) In F344/N Rats And B6C3F1 Mice (Dosed Feed Studies) PubMed.gov[2]
  19. ^ Tan Q.-G., Cai X.-H., Dua Z.-Z., Luo X.-D. "Three terpenoids and a tocopherol-related compound from Ricinus communis" Helvetica Chimica Acta 2009 92:12 (2762-2768)

Further reading

External links